Internal
problem
ID
[23303]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
47
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:29:19 PM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=3*x^2*y(x)+y(x)^2-(-x^3-2*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x^2*y[x]+y[x]^2)-(-x^3-2*x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*y(x) - (-x**3 - 2*x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)