Internal
problem
ID
[23305]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
47
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 09:30:22 PM
CAS
classification
:
[_exact]
ode:=2*x-y(x)*sin(x*y(x))+(6*y(x)^2-x*sin(x*y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x-y[x]*Sin[x*y[x]])+(6*y[x]^2-x*Sin[x*y[x]] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (-x*sin(x*y(x)) + 6*y(x)**2)*Derivative(y(x), x) - y(x)*sin(x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out