Internal
problem
ID
[23307]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
47
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:31:15 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=x+y(x)+(x-y(x))*diff(y(x),x) = 0; ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x+y[x])+( x-y[x] )*D[y[x],x]==0; ic={y[0]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + (x - y(x))*Derivative(y(x), x) + y(x),0) ics = {y(0): 2} dsolve(ode,func=y(x),ics=ics)