87.5.22 problem 29

Internal problem ID [23315]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 47
Problem number : 29
Date solved : Thursday, October 02, 2025 at 09:31:44 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{4}+y^{4}-x y^{3} y^{\prime }&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 58
ode:=x^4+y(x)^4-x*y(x)^3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (4 \ln \left (x \right )+c_1 \right )^{{1}/{4}} x \\ y &= -\left (4 \ln \left (x \right )+c_1 \right )^{{1}/{4}} x \\ y &= -i \left (4 \ln \left (x \right )+c_1 \right )^{{1}/{4}} x \\ y &= i \left (4 \ln \left (x \right )+c_1 \right )^{{1}/{4}} x \\ \end{align*}
Mathematica. Time used: 0.125 (sec). Leaf size: 76
ode=(x^4+y[x]^4)-x*y[x]^3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x \sqrt [4]{4 \log (x)+c_1}\\ y(x)&\to -i x \sqrt [4]{4 \log (x)+c_1}\\ y(x)&\to i x \sqrt [4]{4 \log (x)+c_1}\\ y(x)&\to x \sqrt [4]{4 \log (x)+c_1} \end{align*}
Sympy. Time used: 1.124 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4 - x*y(x)**3*Derivative(y(x), x) + y(x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - i \sqrt [4]{x^{4} \left (C_{1} + 4 \log {\left (x \right )}\right )}, \ y{\left (x \right )} = i \sqrt [4]{x^{4} \left (C_{1} + 4 \log {\left (x \right )}\right )}, \ y{\left (x \right )} = - \sqrt [4]{x^{4} \left (C_{1} + 4 \log {\left (x \right )}\right )}, \ y{\left (x \right )} = \sqrt [4]{x^{4} \left (C_{1} + 4 \log {\left (x \right )}\right )}\right ] \]