Internal
problem
ID
[23315]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
47
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 09:31:44 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^4+y(x)^4-x*y(x)^3*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^4+y[x]^4)-x*y[x]^3*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4 - x*y(x)**3*Derivative(y(x), x) + y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)