Internal
problem
ID
[23317]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
47
Problem
number
:
39
Date
solved
:
Thursday, October 02, 2025 at 09:31:51 PM
CAS
classification
:
[_rational]
ode:=2*x^2+2*y(x)^2+x+(y(x)+x^2+y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2+2*y[x]^2+x)+(x^2+y[x]^2+y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2 + x + (x**2 + y(x)**2 + y(x))*Derivative(y(x), x) + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out