Internal
problem
ID
[23322]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
53
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:32:04 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=-x^2*y(x)+(x^3+y(x)^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-x^2*y[x])+(x^3+y[x]^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x) + (x**3 + y(x)**3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)