87.6.7 problem 7

Internal problem ID [23324]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 53
Problem number : 7
Date solved : Thursday, October 02, 2025 at 09:37:05 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 3 y+\left (7 x -y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=3*y(x)+(7*x-y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ x -\frac {y}{10}-\frac {c_1}{y^{{7}/{3}}} = 0 \]
Mathematica. Time used: 4.91 (sec). Leaf size: 436
ode=3*y[x]+(7*x-y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,1\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,2\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,3\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,4\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,5\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,6\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,7\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,8\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,9\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^{10}-30 \text {$\#$1}^9 x+300 \text {$\#$1}^8 x^2-1000 \text {$\#$1}^7 x^3+e^{10 c_1}\&,10\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.406 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((7*x - y(x))*Derivative(y(x), x) + 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} \right )} = C_{1} - \log {\left (\left (\frac {10 x}{y{\left (x \right )}} - 1\right )^{\frac {3}{10}} \right )} \]