Internal
problem
ID
[23339]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
53
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 09:38:47 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=x^2+y(x)^2-2*x*y(x)*diff(y(x),x) = 0; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^2+y[x]^2)-2*x*y[x]*D[y[x],x]==0; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 - 2*x*y(x)*Derivative(y(x), x) + y(x)**2,0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)