Internal
problem
ID
[23344]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
57
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:39:21 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
With initial conditions
ode:=diff(diff(y(x),x),x) = 1/2*(1+diff(y(x),x)^2)/y(x); ic:=[y(0) = 1, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]==(1+D[y[x],x]^2)/(2*y[x]); ic={y[0]==1,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(Derivative(y(x), x)**2 + 1)/(2*y(x)) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(2*y(x)*Derivative(y(x), (x, 2)) - 1) + Derivative(y(x), x)