87.8.2 problem 2

Internal problem ID [23356]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 65
Problem number : 2
Date solved : Friday, October 03, 2025 at 08:03:42 AM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 1456
ode:=diff(diff(diff(y(x),x),x),x)+x^2*y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 14.859 (sec). Leaf size: 2234
ode=D[y[x],{x,3}]+x^2*y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x) - exp(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve x**2*y(x) - exp(x) + Derivative(y(x), (x, 3))