Internal
problem
ID
[23359]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
65
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:40:27 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-2*diff(diff(diff(diff(y(x),x),x),x),x)+y(x) = 2*x^2+3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,5}]-2*D[y[x],{x,4}]+y[x]==2*x^2+3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 + y(x) - 2*Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Cannot find 5 solutions to the homogeneous equation necessary to apply undeter