87.8.17 problem 17

Internal problem ID [23371]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 65
Problem number : 17
Date solved : Friday, October 03, 2025 at 08:03:43 AM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-y x&=1 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 728
ode:=x*diff(diff(diff(y(x),x),x),x)+4*x*diff(diff(y(x),x),x)-x*y(x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 0.14 (sec). Leaf size: 470
ode=x*D[y[x],{x,3}]+4*x*D[y[x],{x,2}]-x*y[x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {-\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,1\right ]\right ) \operatorname {ExpIntegralEi}\left (\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ] x+\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ] x+4 x\right )+\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,1\right ]\right ) \operatorname {ExpIntegralEi}\left (\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ] x+\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ] x+4 x\right )+\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ]\right ) \operatorname {ExpIntegralEi}\left (-x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ]\right )-\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ]\right ) \operatorname {ExpIntegralEi}\left (-x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ]\right )+\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,1\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ]\right ) \operatorname {ExpIntegralEi}\left (-x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ]\right )-\text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,1\right ] \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ]\right ) \operatorname {ExpIntegralEi}\left (-x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ]\right )}{\sqrt {229}}+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,3\right ]\right )+c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,2\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-1\&,1\right ]\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + 4*x*Derivative(y(x), (x, 2)) + x*Derivative(y(x), (x, 3)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -x*y(x) + 4*x*Derivative(y(x), (x, 2)) + x*Derivative(y(x)