Internal
problem
ID
[23373]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
65
Problem
number
:
19
Date
solved
:
Friday, October 03, 2025 at 08:03:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1+a*cos(2*x))*diff(diff(y(x),x),x)+lambda*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1+a*Cos[2*x])*D[y[x],{x,2}]+\[Lambda]*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x) + (a*cos(2*x) + 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False