87.9.1 problem 16

Internal problem ID [23374]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 74
Problem number : 16
Date solved : Thursday, October 02, 2025 at 09:40:47 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{2 x}}{2}+c_1 \]
Mathematica. Time used: 0.007 (sec). Leaf size: 17
ode=D[y[x],{x,1}]==Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{2 x}}{2}+c_1 \end{align*}
Sympy. Time used: 0.070 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {e^{2 x}}{2} \]