87.9.12 problem 27

Internal problem ID [23385]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 74
Problem number : 27
Date solved : Thursday, October 02, 2025 at 09:40:54 PM
CAS classification : [_separable]

\begin{align*} x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{x} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 18
ode=D[y[x],{x,1}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.052 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} \]