Internal
problem
ID
[23424]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
84
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:41:37 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
ode:=6*diff(diff(diff(y(x),x),x),x)-4*I*diff(diff(y(x),x),x)+(3+I)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=6*D[y[x],{x,3}]-4*I*D[y[x],{x,2}]+(3+I)*D[y[x],{x,1}]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*y(x) + (3 + I)*Derivative(y(x), x) - 4*I*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
RecursionError : maximum recursion depth exceeded