87.11.11 problem 11

Internal problem ID [23429]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 84
Problem number : 11
Date solved : Thursday, October 02, 2025 at 09:41:39 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x}+c_2 \right ) {\mathrm e}^{2 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-5*D[y[x],{x,1}]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.129 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x}\right ) e^{2 x} \]