87.11.20 problem 20

Internal problem ID [23438]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 84
Problem number : 20
Date solved : Thursday, October 02, 2025 at 09:41:44 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=2*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\frac {\sqrt {2}\, x}{2}\right )+c_2 \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 28
ode=2*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\frac {x}{\sqrt {2}}\right )+c_2 \sin \left (\frac {x}{\sqrt {2}}\right ) \end{align*}
Sympy. Time used: 0.041 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\frac {\sqrt {2} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {2} x}{2} \right )} \]