87.12.2 problem 2

Internal problem ID [23450]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 93
Problem number : 2
Date solved : Thursday, October 02, 2025 at 09:41:54 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 8 y^{\prime \prime }-6 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=8*diff(diff(y(x),x),x)-6*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {x}{2}}+c_2 \,{\mathrm e}^{\frac {x}{4}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 26
ode=8*D[y[x],{x,2}]-6*D[y[x],{x,1}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{x/4} \left (c_2 e^{x/4}+c_1\right ) \end{align*}
Sympy. Time used: 0.125 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 6*Derivative(y(x), x) + 8*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x}{4}} + C_{2} e^{\frac {x}{2}} \]