87.12.9 problem 9

Internal problem ID [23457]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 93
Problem number : 9
Date solved : Thursday, October 02, 2025 at 09:41:58 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (\left (c_4 x +c_3 \right ) {\mathrm e}^{3 x}+c_1 \,{\mathrm e}^{x}+c_2 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 33
ode=D[y[x],{x,4}]+D[y[x],{x,3}]-3*D[y[x],{x,2}]-D[y[x],{x,1}]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_2 e^x+e^{3 x} (c_4 x+c_3)+c_1\right ) \end{align*}
Sympy. Time used: 0.145 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- 2 x} + C_{4} e^{- x} + \left (C_{1} + C_{2} x\right ) e^{x} \]