87.12.27 problem 30

Internal problem ID [23475]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 93
Problem number : 30
Date solved : Thursday, October 02, 2025 at 09:42:13 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = {\mathrm e}^{-t} \left (c_2 t +c_1 \right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=D[y[t],{t,2}]+2*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-t} (c_2 t+c_1) \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} t\right ) e^{- t} \]