Internal
problem
ID
[23482]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
93
Problem
number
:
38
(a)
Date
solved
:
Thursday, October 02, 2025 at 09:42:16 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*r*diff(y(x),x)+(r^2-1/4*alpha^2)*y(x) = 0; ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*r*D[y[x],x]+(r^2-\[Alpha]^2/4)*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") r = symbols("r") a = symbols("a") y = Function("y") ode = Eq(-2*r*Derivative(y(x), x) + (-a**2/4 + r**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)