87.13.31 problem 35

Internal problem ID [23514]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 100
Problem number : 35
Date solved : Thursday, October 02, 2025 at 09:42:37 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-x y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)-x*diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_3 \,x^{4}+c_4 \,x^{2}+c_2 x +c_1 \]
Mathematica. Time used: 0.017 (sec). Leaf size: 27
ode=x^2*D[y[x],{x,4}]-x*D[y[x],{x,3}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 x^4}{24}+c_4 x^2+c_3 x+c_2 \end{align*}
Sympy. Time used: 0.058 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 4)) - x*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} x^{2} + C_{4} x^{4} \]