4.5.8 problem 8

Internal problem ID [1200]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.6. Page 100
Problem number : 8
Date solved : Tuesday, September 30, 2025 at 04:28:21 AM
CAS classification : [`x=_G(y,y')`]

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \end{align*}
Maple
ode:=exp(x)*sin(y(x))+3*y(x)-(3*x-exp(x)*sin(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=Exp[x]*Sin[y[x]]+3*y[x]-(3*x-Exp[x]*Sin[y[x]])*D[y[x],x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-3*x + exp(x)*sin(y(x)))*Derivative(y(x), x) + 3*y(x) + exp(x)*sin(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out