87.14.2 problem 2

Internal problem ID [23521]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 109
Problem number : 2
Date solved : Thursday, October 02, 2025 at 09:42:41 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2}-x \right ) y^{\prime }-2 y x&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{-2 x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=x^2*diff(diff(y(x),x),x)+(2*x^2-x)*diff(y(x),x)-2*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,{\mathrm e}^{-2 x}-2 c_1 x +c_1 \]
Mathematica. Time used: 0.038 (sec). Leaf size: 25
ode=x^2*D[y[x],{x,2}]+(2*x^2-x)*D[y[x],x]-2*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-2 x}+\frac {1}{4} c_2 (2 x-1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*y(x) + (2*x**2 - x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False