Internal
problem
ID
[23521]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
109
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:42:41 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x^2*diff(diff(y(x),x),x)+(2*x^2-x)*diff(y(x),x)-2*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(2*x^2-x)*D[y[x],x]-2*x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*y(x) + (2*x**2 - x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False