87.14.7 problem 7

Internal problem ID [23526]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 109
Problem number : 7
Date solved : Thursday, October 02, 2025 at 09:42:43 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1-\ln \left (x \right )\right ) y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}
Maple. Time used: 0.017 (sec). Leaf size: 12
ode:=x^2*(1-ln(x))*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \ln \left (x \right ) \]
Mathematica. Time used: 0.066 (sec). Leaf size: 16
ode=x^2*(1-Log[x])*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 x-c_2 \log (x) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - log(x))*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(log(x) - 1)*Derivative(y(x), (x, 2)