Internal
problem
ID
[23532]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
109
Problem
number
:
13
Date
solved
:
Thursday, October 02, 2025 at 09:42:45 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x*(1-3*x*ln(x))*diff(diff(y(x),x),x)+(1+9*x^2*ln(x))*diff(y(x),x)-(3+9*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(1-3*x*Log[x])*D[y[x],{x,2}]+(1+9*x^2*Log[x])*D[y[x],x]-(3+9*x)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(-3*x*log(x) + 1)*Derivative(y(x), (x, 2)) - (9*x + 3)*y(x) + (9*x**2*log(x) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (3*x**2*log(x)*Derivative(y(x), (x, 2)) +