Internal
problem
ID
[23571]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
119
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:43:02 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = exp(x)+exp(-2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==Exp[x]+Exp[-2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - exp(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)