87.17.1 problem 1

Internal problem ID [23593]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:43:18 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+y(x) = x+2*exp(-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +{\mathrm e}^{-x}+x \]
Mathematica. Time used: 0.268 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+y[x]==x+2*Exp[-x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+e^{-x}+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), (x, 2)) - 2*exp(-x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + x + e^{- x} \]