87.17.16 problem 16

Internal problem ID [23608]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 16
Date solved : Thursday, October 02, 2025 at 09:43:25 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\left (1+x \right ) {\mathrm e}^{x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+y(x) = exp(x)*(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\frac {{\mathrm e}^{x} x}{2} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 24
ode=D[y[x],{x,2}]+y[x]==Exp[x]*(1+x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^x x}{2}+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.054 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(x + 1)*exp(x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + \frac {x e^{x}}{2} \]