Internal
problem
ID
[23615]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
127
Problem
number
:
23
Date
solved
:
Thursday, October 02, 2025 at 09:43:29 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = 2*x*exp(-x)+x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-D[y[x],x]-2*y[x]==2*x*Exp[-x]+x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 2*x*exp(-x) - 2*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)