Internal
problem
ID
[23619]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
127
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 09:43:32 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)-8*y(x) = exp(x)*(x^2+2); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],{x,1}]-8*y[x]==Exp[x]*(x^2+2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) - (x**2 + 2)*exp(x) - 8*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)