Internal
problem
ID
[23633]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
127
Problem
number
:
50
Date
solved
:
Thursday, October 02, 2025 at 09:43:40 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*diff(diff(y(t),t),t)+7*diff(y(t),t)+3*y(t) = 5*cos(t); ic:=[y(0) = -3, D(y)(0) = 5]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=4*D[y[t],{t,2}]+7*D[y[y],t]+3*y[t]==5*Cos[t]; ic={y[0]==-3,Derivative[1][y][0] ==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*y(t) - 5*cos(t) + 7*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {y(0): -3, Subs(Derivative(y(t), t), t, 0): 5} dsolve(ode,func=y(t),ics=ics)