Internal
problem
ID
[23640]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
127
Problem
number
:
57
Date
solved
:
Thursday, October 02, 2025 at 09:43:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = exp(a*x); ic:=[y(0) = y__0, D(y)(0) = y__1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==Exp[a*x]; ic={y[0]==y0,Derivative[1][y][0] ==y1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y0 = symbols("y0") y1 = symbols("y1") y = Function("y") ode = Eq(y(x) - exp(a*x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): y0, Subs(Derivative(y(x), x), x, 0): y1} dsolve(ode,func=y(x),ics=ics)