87.18.9 problem 9

Internal problem ID [23650]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 135
Problem number : 9
Date solved : Thursday, October 02, 2025 at 09:43:49 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = sec(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (-1+c_1 \right ) \cos \left (x \right )+\sin \left (x \right ) c_2 +\frac {\sec \left (x \right )}{2} \]
Mathematica. Time used: 0.035 (sec). Leaf size: 25
ode=D[y[x],{x,2}]+y[x]==Sec[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sec (x)}{2}+c_1 \cos (x)+\sin (x) (\tan (x)+c_2) \end{align*}
Sympy. Time used: 0.216 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sec(x)**3 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} - \frac {\cos {\left (2 x \right )}}{2 \cos {\left (x \right )}} \]