87.18.12 problem 12

Internal problem ID [23653]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 135
Problem number : 12
Date solved : Thursday, October 02, 2025 at 09:43:51 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = exp(2*x)/(exp(x)+1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 +c_1 x +\ln \left (1+{\mathrm e}^{x}\right )-\frac {x}{2}\right ) \]
Mathematica. Time used: 0.197 (sec). Leaf size: 24
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==Exp[2*x]/(1+Exp[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (\log \left (e^x+1\right )+(-1+c_2) x+c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(2*x)/(exp(x) + 1)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (y(x)*exp(2*x) + 2*y(x)*exp(x) + y(x) + ex