87.18.15 problem 15

Internal problem ID [23656]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 135
Problem number : 15
Date solved : Thursday, October 02, 2025 at 09:43:54 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} -3 y+x y^{\prime }+2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 20
ode:=2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-3*y(x) = 1/x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{{3}/{2}} c_2 +\frac {c_1}{x}+\frac {1}{18 x^{3}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 27
ode=2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-3*y[x]==1/x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 x^{3/2}+\frac {1}{18 x^3}+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.158 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 3*y(x) - 1/x**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x^{\frac {3}{2}} + \frac {1}{18 x^{3}} \]