87.19.6 problem 6

Internal problem ID [23676]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 3. Linear Systems. Exercise at page 149
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:44:10 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=-2 x+y \left (t \right )\\ y^{\prime }\left (t \right )&=x-2 y \left (t \right ) \end{align*}
Maple. Time used: 0.046 (sec). Leaf size: 34
ode:=[diff(x(t),t) = -2*x(t)+y(t), diff(y(t),t) = x(t)-2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{-t}+c_2 \,{\mathrm e}^{-3 t} \\ y \left (t \right ) &= c_1 \,{\mathrm e}^{-t}-c_2 \,{\mathrm e}^{-3 t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 68
ode={D[x[t],t]==-2*x[t]+y[t],D[y[t],t]==x[t]-2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{2} e^{-3 t} \left (c_1 \left (e^{2 t}+1\right )+c_2 \left (e^{2 t}-1\right )\right )\\ y(t)&\to \frac {1}{2} e^{-3 t} \left (c_1 \left (e^{2 t}-1\right )+c_2 \left (e^{2 t}+1\right )\right ) \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 27
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(2*x(t) - y(t) + Derivative(x(t), t),0),Eq(-x(t) + 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- 3 t} + C_{2} e^{- t}, \ y{\left (t \right )} = C_{1} e^{- 3 t} + C_{2} e^{- t}\right ] \]