87.20.3 problem 3

Internal problem ID [23688]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 3. Linear Systems. Exercise at page 161
Problem number : 3
Date solved : Thursday, October 02, 2025 at 09:44:16 PM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=4 x_{1} \left (t \right )-x_{2} \left (t \right )+3 \,{\mathrm e}^{2 t}\\ x_{2}^{\prime }\left (t \right )&=2 x_{1} \left (t \right )+x_{2} \left (t \right )+2 t \end{align*}
Maple. Time used: 0.073 (sec). Leaf size: 68
ode:=[diff(x__1(t),t) = 4*x__1(t)-x__2(t)+3*exp(2*t), diff(x__2(t),t) = 2*x__1(t)+x__2(t)+2*t]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \frac {{\mathrm e}^{2 t} c_2}{2}-3 \,{\mathrm e}^{2 t} t +{\mathrm e}^{3 t} c_1 -6 \,{\mathrm e}^{2 t}-\frac {t}{3}-\frac {5}{18} \\ x_{2} \left (t \right ) &= {\mathrm e}^{2 t} c_2 +{\mathrm e}^{3 t} c_1 -\frac {7}{9}-6 \,{\mathrm e}^{2 t} t -6 \,{\mathrm e}^{2 t}-\frac {4 t}{3} \\ \end{align*}
Mathematica. Time used: 0.084 (sec). Leaf size: 93
ode={D[x1[t],t]==4*x1[t]-x2[t]+3*Exp[2*t],D[x2[t],t]==2*x1[t]+x2[t]+2*t}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to \frac {1}{18} (-6 t-5)-e^{2 t} (3 t+6+c_1-c_2)+(2 c_1-c_2) e^{3 t}\\ \text {x2}(t)&\to -\frac {4 t}{3}-2 e^{2 t} (3 t+3+c_1-c_2)+(2 c_1-c_2) e^{3 t}-\frac {7}{9} \end{align*}
Sympy. Time used: 0.170 (sec). Leaf size: 68
from sympy import * 
t = symbols("t") 
x1 = Function("x1") 
x2 = Function("x2") 
ode=[Eq(-4*x1(t) + x2(t) - 3*exp(2*t) + Derivative(x1(t), t),0),Eq(-2*t - 2*x1(t) - x2(t) + Derivative(x2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x1(t),x2(t)],ics=ics)
 
\[ \left [ x_{1}{\left (t \right )} = C_{2} e^{3 t} - 3 t e^{2 t} - \frac {t}{3} + \left (\frac {C_{1}}{2} - 6\right ) e^{2 t} - \frac {5}{18}, \ x_{2}{\left (t \right )} = C_{2} e^{3 t} - 6 t e^{2 t} - \frac {4 t}{3} + \left (C_{1} - 6\right ) e^{2 t} - \frac {7}{9}\right ] \]