Internal
problem
ID
[23690]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:44:17 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 5*x(t)-6*y(t)+1, diff(y(t),t) = 6*x(t)-7*y(t)+1]; dsolve(ode);
ode={D[x[t],t]==5*x[t]-6*y[t]+1,D[y[t],t]==6*x[t]-7*y[t]+1}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-5*x(t) + 6*y(t) + Derivative(x(t), t) - 1,0),Eq(-6*x(t) + 7*y(t) + Derivative(y(t), t) - 1,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)