Internal
problem
ID
[23694]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:44:20 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(N__1(t),t) = 4*N__1(t)-6*N__2(t), diff(N__2(t),t) = 8*N__1(t)-10*N__2(t)]; ic:=[N__1(0) = 100000, N__2(0) = 1000]; dsolve([ode,op(ic)]);
ode={D[N1[t],t]==4*N1[t]-6*N2[t],D[N2[t],t]==8*N1[t]-10*N2[t]}; ic={N1[0]==10^5,N2[0]==10^3}; DSolve[{ode,ic},{N1[t],N2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") N1 = Function("N1") N2 = Function("N2") ode=[Eq(-4*N1(t) + 6*N2(t) + Derivative(N1(t), t),0),Eq(-8*N1(t) + 10*N2(t) + Derivative(N2(t), t),0)] ics = {N1(0): 100000, N2(0): 1000} dsolve(ode,func=[N1(t),N2(t)],ics=ics)