Internal
problem
ID
[23710]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
26
Date
solved
:
Thursday, October 02, 2025 at 09:44:29 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)-y(t), diff(y(t),t) = 9*x(t)+2*y(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]-y[t],D[y[t],t]==9*x[t]+2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + y(t) + Derivative(x(t), t),0),Eq(-9*x(t) - 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)