87.21.1 problem 1

Internal problem ID [23715]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 3. Linear Systems. Exercise at page 178
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:44:32 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=4 x+2 y \left (t \right )\\ y^{\prime }\left (t \right )&=-3 x-y \left (t \right ) \end{align*}
Maple. Time used: 0.048 (sec). Leaf size: 31
ode:=[diff(x(t),t) = 4*x(t)+2*y(t), diff(y(t),t) = -3*x(t)-y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{t} \\ y \left (t \right ) &= -c_1 \,{\mathrm e}^{2 t}-\frac {3 c_2 \,{\mathrm e}^{t}}{2} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 56
ode={D[x[t],t]==4*x[t]+2*y[t],D[y[t],t]==-3*x[t]-y[t] }; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^t \left (c_1 \left (3 e^t-2\right )+2 c_2 \left (e^t-1\right )\right )\\ y(t)&\to e^t \left (c_2 \left (3-2 e^t\right )-3 c_1 \left (e^t-1\right )\right ) \end{align*}
Sympy. Time used: 0.058 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-4*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(3*x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {2 C_{1} e^{t}}{3} - C_{2} e^{2 t}, \ y{\left (t \right )} = C_{1} e^{t} + C_{2} e^{2 t}\right ] \]