Internal
problem
ID
[23734]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
178
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 09:44:42 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 7*x(t)+4*y(t)-4*z(t), diff(y(t),t) = 4*x(t)-8*y(t)-z(t), diff(z(t),t) = -4*x(t)-y(t)-8*z(t)]; dsolve(ode);
ode={D[x[t],t]==7*x[t]+4*y[t]-4*z[t],D[y[t],t]==4*x[t]-8*y[t]-z[t],D[z[t],t]==-4*x[t]-y[t]-8*z[t] }; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-7*x(t) - 4*y(t) + 4*z(t) + Derivative(x(t), t),0),Eq(-4*x(t) + 8*y(t) + z(t) + Derivative(y(t), t),0),Eq(4*x(t) + y(t) + 8*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)