Internal
problem
ID
[23736]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
178
Problem
number
:
22
Date
solved
:
Thursday, October 02, 2025 at 09:44:44 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)+y(t), diff(y(t),t) = x(t)+3*y(t), diff(z(t),t) = 2*z(t)+w(t)+h(t), diff(w(t),t) = z(t)+2*w(t)+h(t), diff(h(t),t) = z(t)+w(t)+2*h(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]+y[t],D[y[t],t]==x[t]+3*y[t],D[z[t],t]==2*z[t]+w[t]+h[t],D[w[t],t]==z[t]+2*w[t]+h[t],D[h[t],t]==z[t]+w[t]+2*h[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t],w[t],h[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") w = Function("w") h = Function("h") ode=[Eq(-3*x(t) - y(t) + Derivative(x(t), t),0),Eq(-x(t) - 3*y(t) + Derivative(y(t), t),0),Eq(-h(t) - w(t) - 2*z(t) + Derivative(z(t), t),0),Eq(-h(t) - 2*w(t) - z(t) + Derivative(w(t), t),0),Eq(-2*h(t) - w(t) - z(t) + Derivative(h(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t),w(t),h(t)],ics=ics)