Internal
problem
ID
[23739]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
178
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 09:44:46 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 3*x(t)+2*y(t)+2*z(t), diff(y(t),t) = x(t)+4*y(t)+z(t), diff(z(t),t) = -2*x(t)-4*y(t)-z(t)]; ic:=[x(0) = 1, y(0) = 0, z(0) = -1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==3*x[t]+2*y[t]+2*z[t],D[y[t],t]==x[t]+4*y[t]+z[t],D[z[t],t]==-2*x[t]-4*y[t]-z[t]}; ic={x[0]==1,y[0]==0,z[0]==-1}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-3*x(t) - 2*y(t) - 2*z(t) + Derivative(x(t), t),0),Eq(-x(t) - 4*y(t) - z(t) + Derivative(y(t), t),0),Eq(2*x(t) + 4*y(t) + z(t) + Derivative(z(t), t),0)] ics = {x(0): 1, y(0): 0, z(0): -1} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)