Internal
problem
ID
[23741]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
178
Problem
number
:
27
Date
solved
:
Thursday, October 02, 2025 at 09:44:47 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = z(t)-x(t), diff(z(t),t) = x(t)+3*y(t)+z(t)]; ic:=[x(0) = 1, y(0) = 1, z(0) = 3]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==2*x[t]+y[t],D[y[t],t]==-x[t]+z[t],D[z[t],t]==x[t]+3*y[t]+z[t]}; ic={x[0]==1,y[0]==1,z[0]==3}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-2*x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) - z(t) + Derivative(y(t), t),0),Eq(-x(t) - 3*y(t) - z(t) + Derivative(z(t), t),0)] ics = {x(0): 1, y(0): 1, z(0): 3} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)