Internal
problem
ID
[23743]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
178
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 09:44:49 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -10*x(t)+y(t)+7*z(t), diff(y(t),t) = -9*x(t)+4*y(t)+5*z(t), diff(z(t),t) = -17*x(t)+y(t)+12*z(t)]; ic:=[x(0) = 6, y(0) = 1, z(0) = 10]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==-10*x[t]+y[t]+7*z[t],D[y[t],t]==-9*x[t]+4*y[t]+5*z[t],D[z[t],t]==-17*x[t]+y[t]+12*z[t]}; ic={x[0]==6,y[0]==1,z[0]==10}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(10*x(t) - y(t) - 7*z(t) + Derivative(x(t), t),0),Eq(9*x(t) - 4*y(t) - 5*z(t) + Derivative(y(t), t),0),Eq(17*x(t) - y(t) - 12*z(t) + Derivative(z(t), t),0)] ics = {x(0): 6, y(0): 1, z(0): 10} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)