Internal
problem
ID
[23772]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
4.
The
Laplace
transform.
Exercise
at
page
199
Problem
number
:
27
Date
solved
:
Thursday, October 02, 2025 at 09:45:02 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)-y(t) = 12*sinh(t); ic:=[y(0) = 6, D(y)(0) = -1, (D@@2)(y)(0) = 7]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,3}]-y[t]==12*Sinh[t]; ic={y[0]==6,Derivative[1][y][0] ==-1,Derivative[2][y][0] ==7}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) - 12*sinh(t) + Derivative(y(t), (t, 3)),0) ics = {y(0): 6, Subs(Derivative(y(t), t), t, 0): -1, Subs(Derivative(y(t), (t, 2)), t, 0): 7} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : Could not solve `-y(t) - 12*sinh(t) + Derivative(y(t), (t, 3))` using the meth