Internal
problem
ID
[23777]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
4.
The
Laplace
transform.
Exercise
at
page
199
Problem
number
:
32
Date
solved
:
Thursday, October 02, 2025 at 09:45:05 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)+y(t) = 18*exp(2*t); ic:=[y(0) = -1, D(y)(0) = 13, (D@@2)(y)(0) = -1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,3}]+y[t]==18*Exp[2*t]; ic={y[0]==-1,Derivative[1][y][0] ==13,Derivative[2][y][0] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 18*exp(2*t) + Derivative(y(t), (t, 3)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 13, Subs(Derivative(y(t), (t, 2)), t, 0): -1} dsolve(ode,func=y(t),ics=ics)